← Volver atrás
Publicaciones

A Preliminary Study of Diversity in Extreme Learning Machines Ensembles

Autores

PERALES GONZÁLEZ, CARLOS, CARBONERO RUZ, MARIANO, BECERRA ALONSO, DAVID, FERNÁNDEZ NAVARRO, FRANCISCO DE ASÍS

Publicación externa

No

Medio

Lect. Notes Comput. Sci.

Alcance

Proceedings Paper

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto SJR

0.283

Fecha de publicacion

01/01/2018

ISI

000443487900025

Scopus Id

2-s2.0-85048895231

Abstract

In this paper, the neural network version of Extreme Learning Machine (ELM) is used as a base learner for an ensemble meta algorithm which promotes diversity explicitly in the ELM loss function. The cost function proposed encourages orthogonality (scalar product) in the parameter space. Other ensemble-based meta-algorithms from AdaBoost family are used for comparison purposes. Both accuracy and diversity presented in our proposal are competitive, thus reinforcing the idea of introducing diversity explicitly.

Palabras clave

Extreme learning machine; Diversity; Machine learning; Ensemble; AdaBoost

Miembros de la Universidad Loyola