← Volver atrás
Publicaciones

Abelian Ideals of Maximal Dimension for Solvable Lie Algebras

Autores

Burde, Dietrich , CEBALLOS GONZÁLEZ, MANUEL

Publicación externa

No

Medio

J. Lie Theory

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

0.455

Impacto SJR

0.549

Fecha de publicacion

01/01/2012

ISI

000309042600006

Abstract

We compare the maximal dimension of abelian subalgebras and the maximal dimension of abelian ideals for finite-dimensional Lie algebras. We show that these dimensions coincide for solvable Lie algebras over an algebraically closed field of characteristic zero. We compute this invariant for all complex nilpotent Lie algebras of dimension n <= 7. Furthermore we study the case where there exists an abelian subalgebra of codimension 2. Here we explicitly construct an abelian ideal of codimension 2 in case of nilpotent Lie algebras.

Palabras clave

Abelian ideals; abelian subalgebras; degenerations

Miembros de la Universidad Loyola