← Volver atrás
Publicaciones

Algorithmic method to obtain abelian subalgebras and ideals in Lie algebras

Autores

CEBALLOS GONZÁLEZ, MANUEL, Nunez, Juan , Tenorio, Angel F.

Publicación externa

Si

Medio

Int. J. Comput. Math.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

0.542

Impacto SJR

0.412

Fecha de publicacion

01/01/2012

ISI

000305484100009

Abstract

In this paper, we show an algorithmic procedure to compute abelian subalgebras and ideals of finite-dimensional Lie algebras, starting from the non-zero brackets in its law. In order to implement this method, we use the symbolic computation package MAPLE 12. Moreover, we also give a brief computational study considering both the computing time and the memory used in the two main routines of the implementation. Finally, we determine the maximal dimension of abelian subalgebras and ideals for non-decomposable solvable non-nilpotent Lie algebras of dimension 6 over both the fields R and C, showing the differences between these fields.

Palabras clave

abelian Lie subalgebra; abelian ideal; alpha invariant; beta invariant; algorithm

Miembros de la Universidad Loyola