← Volver atrás
Publicaciones

Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder

Autores

Armano, M. , Audley, H. , Baird, J. , Born, M. , Bortoluzzi, D. , Cardines, N. , Castelli, E. , Cavalleri, A. , Cesarini, A. , Cruise, A. M. , Danzmann, K. , de Deus Silva, M. , Dixon, G. , Dolesi, R. , Ferraioli, L. , Ferroni, V , Fitzsimons, E. D. , Freschi, M. , Gesa, L. , Giardini, D. , Gibert, F. , Giusteri, R. , Grimani, C. , Grzymisch, J. , Harrison, I , Hartig, M-S , Heinzel, G. , Hewitson, M. , Hollington, D. , Hoyland, D. , Hueller, M. , Inchauspe, H. , Jennrich, O. , Jetzer, P. , Karnesis, N. , Kaune, B. , Killow, C. J. , Korsakova, N. , Lopez-Zaragoza, J. P. , Maarschalkerweerd, R. , Mance, D. , Martin, V , Martin-Polo, L. , Martino, J. , Martin-Porqueras, F. , Mateos, I , McNamara, P. W. , Mendes, J. , Mendes, L. , Meshksar, N. , Nofrarias, M. , Paczkowski, S. , Perreur-Lloyd, M. , Petiteau, A. , Pivato, P. , Plagnol, E. , Ramos-Castro, J. , Reiche, J. , RIVAS GARCÍA, FRANCISCO, Robertson, D. , Russano, G. , Slutsky, J. , Sopuerta, C. F. , Sumner, T. , Texier, D. , ten Pierick, J. , Thorpe, J. , Vetrugno, D. , Vitale, S. , Wanner, G. , Ward, H. , Wass, P. J. , Weber, W. J. , Wissel, L. , Wittchen, A. , Zweifel, P.

Publicación externa

Si

Medio

Rev. Sci. Instrum.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

1.523

Impacto SJR

0.605

Fecha de publicacion

01/04/2020

ISI

000526773700002

Abstract

The Laser Interferometer Space Antenna Pathfinder (LPF) main observable, labeled Delta g, is the differential force per unit mass acting on the two test masses under free fall conditions after the contribution of all non-gravitational forces has been compensated. At low frequencies, the differential force is compensated by an applied electrostatic actuation force, which then must be subtracted from the measured acceleration to obtain Delta g. Any inaccuracy in the actuation force contaminates the residual acceleration. This study investigates the accuracy of the electrostatic actuation system and its impact on the LPF main observable. It is shown that the inaccuracy is mainly caused by the rounding errors in the waveform processing and also by the random error caused by the analog to digital converter random noise in the control loop. Both errors are one order of magnitude smaller than the resolution of the commanded voltages. We developed a simulator based on the LPF design to compute the close-to-reality actuation voltages and, consequently, the resulting actuation forces. The simulator is applied during post-processing the LPF data.

Miembros de la Universidad Loyola