← Volver atrás
Publicaciones

Input-to-state stable predictive control based on continuous projected kinky inference

Autores

MANZANO CRESPO, JOSÉ MARÍA, Munoz de la Pena, David , Limon, Daniel

Publicación externa

No

Medio

Int. J. Robust Nonlinear Control

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

3.9

Impacto SJR

1.403

Fecha de publicacion

13/12/2022

ISI

000898061600001

Scopus Id

2-s2.0-85144044501

Abstract

In this article, the authors propose a novel continuous projected kinky inference algorithm, which inherits the good properties of projected kinky inference in terms of prediction error bound and computational time while ensuring Lipschitz continuity. Based on this, a learning based MPC is presented which is demonstrated to be input-to-state stable by design. Illustrative examples are shown in a learning-based MPC framework.

Palabras clave

inference algorithms; machine learning; predictive control; input-to-state stability; system identification

Miembros de la Universidad Loyola