← Volver atrás
Publicaciones

LISA Pathfinder as a Micrometeoroid Instrument

Autores

Littenberg, T. B. , Baker, J. , Armano, M. , Audley, H. , Auger, G. , Baird, J. , Bassan, M. , Binetruy, P. , Born, M. , Bortoluzzi, D. , Brandt, N. , Caleno, M. , Cavalleri, A. , Cesarini, A. , Cruise, M. , Danzmann, K. , de Deus Silva, M. , De Rosa, R. , Di Fiore, L. , Diepholz, I. , Dolesi, R. , Dunbar, N. , Ferraioli, L. , Ferroni, V. , Fitzsimons, E. , Flatscher, R. , Freschi, M. , Marrirodriga, C. Garcia , Gerndt, R. , Gesa, L. , Gibert, F. , Giardini, D. , Giusteri, R. , Grado, A. , Grimani, C. , Grzymisch, J. , Harrison, I. , Heinzel, G. , Hewitson, M. , Hollington, D. , Hoyland, D. , Hueller, M. , Inchauspe, H. , Jennrich, O. , Jetzer, P. , Johlander, B. , Karnesis, N. , Kaune, B. , Korsakova, N. , Killow, C. , Lobo, A. , Lloro, I. , Liu, L. , Lopez-Zaragoza, J. P. , Maarschalkerweerd, R. , Mance, D. , Martin, V. , Martin-Polo, L. , Martino, J. , Martin-Porqueras, F. , Madden, S. , Mateos, I. , McNamara, P. W. , Mendes, J. , Mendel, L. , Nofrarias, M. , Paczkowski, S. , Perreur-Lloyd, M. , Petiteau, A. , Pivato, P. , Plagnol, E. , Prat, P. , Ragnit, U. , Ramos-Castro, J. , Reiche, J. , Robertson, D. I. , Rozemeijer, H. , RIVAS GARCÍA, FRANCISCO, Russano, G. , Sarra, P. , Schleicher, A. , Shaul, D. , Slutsky, J. , Sopuerta, C. F. , Stanga, R. , Sumner, T. , Texier, D. , Thorpe, J. I. , Trenke, C. , Troebs, M. , Vetrugno, D. , Vitale, S. , Wanner, G. , Ward, H. , Wass, P. , Wealthy, D. , Weber, W. J. , Wissel, L. , Wittchen, A. , Zambotti, A. , Zanoni, C. , Ziegler, T. , Zweifel, P. , LISA Pathfinder Team

Publicación externa

Si

Medio

J. Phys. Conf. Ser.

Alcance

Proceedings Paper

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto SJR

0.241

Fecha de publicacion

01/01/2017

ISI

000437968700007

Abstract

LISA Pathfinder is perhaps the most precise accelerometry instrument ever flown in space. The drag-free control system can sense and react to external disturbances of an extremely small magnitude. One class of such disturbances are the impacts of micrometeoroids or dust. A simple model of the LPF system suggests that individual impacts with transferred momentum exceeding a few tens of nanoNewton-meters are detectable. Furthermore, the ability of LPF to resolve both the linear and angular momentum transfer as vector quantities allows information such as the sky location and the impact location of the impactor to be reconstructed. This novel approach to micrometeoroid detection and characterization, as well as the location of LPF at L1, provide an opportunity to improve our understanding of the dust environment in the inner solar system. Here we present some preliminary findings from LPF, including four candidate impact events.