← Volver atrás
Publicaciones

On abelian subalgebras and ideals of maximal dimension in supersolvable Lie algebras

Autores

CEBALLOS GONZÁLEZ, MANUEL, Towers, David A.

Publicación externa

Si

Medio

J. Pure Appl. Algebr.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

0.474

Impacto SJR

1.129

Fecha de publicacion

01/03/2014

ISI

000327910500010

Abstract

In this paper, the main objective is to compare the abelian subalgebras and ideals of maximal dimension for finite-dimensional supersolvable Lie algebras. We characterise the maximal abelian subalgebras of solvable Lie algebras and study solvable Lie algebras containing an abelian subalgebra of codimension 2. Finally, we prove that nilpotent Lie algebras with an abelian subalgebra of codimension 3 contain an abelian ideal with the same dimension, provided that the characteristic of the underlying field is not 2. Throughout the paper, we also give several examples to clarify some results. (C) 2013 Elsevier B.V. All rights reserved.

Miembros de la Universidad Loyola