← Volver atrás
Publicaciones

Ordinal regression by a gravitational model in the field of educational data mining

Autores

GÓMEZ DEL REY, PILAR, FERNÁNDEZ NAVARRO, FRANCISCO DE ASÍS, Barbera, Elena

Publicación externa

No

Medio

Expert Syst.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

1.18

Impacto SJR

0.309

Fecha de publicacion

01/04/2016

ISI

000373929300003

Scopus Id

2-s2.0-84951964988

Abstract

Educational data mining (EDM) is a research area where the goal is to develop data mining methods to examine data critically from educational environments. Traditionally, EDM has addressed the following problems: clustering, classification, regression, anomaly detection and association rule mining. In this paper, the ordinal regression (OR) paradigm, is introduced in the field of EDM. The goal of OR problems is the classification of items in an ordinal scale. For instance, the prediction of students' performance in categories (where the different grades could be ordered according to A > B > C > D) is a classical example of an OR problem. The EDM community has not yet explored this paradigm (despite the importance of these problems in the field of EDM). Furthermore, an amenable and interpretable OR model based on the concept of gravitation is proposed. The model is an extension of a recently proposed gravitational model that tackles imbalanced nominal classification problems. The model is carefully adapted to the ordinal scenario and validated with four EDM datasets. The results obtained were compared with state-of-the-art OR algorithms and nominal classification ones. The proposed models can be used to better understand the learning-teaching process in higher education environments.

Palabras clave

educational data mining; ordinal regression models; students satisfaction; gravitational models