Título Space-time mesh adaptation for the VMS-Smagorinsky modeling of high Reynolds number flows
Autores Temellini, Erika , Ferro, Nicola , Stabile, Giovanni , DELGADO AVILA, ENRIQUE, Rebollo, Tomas Chacon , Perotto, Simona
Publicación externa No
Medio J. Comput. Phys.
Alcance Article
Naturaleza Científica
Cuartil JCR 1
Cuartil SJR 1
Fecha de publicacion 15/09/2025
ISI 001509639600001
DOI 10.1016/j.jcp.2025.114123
Abstract Traditional methods, such as Reynolds-Averaged Navier-Stokes (RANS) equations and Large Eddy Simulations (LES), provide consolidated tools for the numerical approximation of high Reynolds number flows in a wide range of applications-from green energy to industrial design. In general, RANS modeling is practical when the main interest is the time-averaged flow behavior. LES equations offer detailed insights into flow dynamics and a more accurate solution, but the high computational demand necessitates innovative strategies to reduce costs while maintaining precision. In this study, we enhance the Variational MultiScale (VMS)-Smagorinsky LES model by relying on an adaptive discretization strategy in both space and time, driven by a recovery-based a posteriori error analysis. We assess the effectiveness of the approach in capturing flow characteristics across a wide range of Reynolds numbers through benchmark tests.
Palabras clave LES; VMS-Smagorinsky model; Space-time mesh adaptation; Anisotropic grids; Finite element
Miembros de la Universidad Loyola