Título The metric-aware kernel-width choice for LIME
Autores Barrera-Vicen A. , PALUZO HIDALGO, EDUARDO, Gutiérrez-Naranjo M.A.
Publicación externa No
Medio CEUR Workshop Proc.
Alcance Conference Paper
Naturaleza Científica
Impacto SJR 0.191
Web https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178587954&partnerID=40&md5=8f3f390d5ef84eb8f523b1325acdbd39
Fecha de publicacion 01/01/2023
Scopus Id 2-s2.0-85178587954
Abstract Local Interpretable Model-Agnostic Explanations (LIME) are a well-known approach to provide local interpretability to Machine Learning models. LIME uses an exponential smoothing kernel based on the kernel width value, which defines the width of the local neighbourhood. In this paper, we study the influence of the distances for these local explanations, and we explore the choice of kernel width to guarantee a fair performance comparison between the distances. © 2023 CEUR-WS. All rights reserved.
Palabras clave Explainability; Exponential smoothing; Interpretability; Kernel width; Local interpretable model-agnostic explanation; Local neighborhoods; Machine learning models; Performance comparison; Smoothing kernels; XAI; Lime
Miembros de la Universidad Loyola