← Volver atrás
Publicaciones

The metric-aware kernel-width choice for LIME

Autores

Barrera-Vicen A. , PALUZO HIDALGO, EDUARDO, Gutiérrez-Naranjo M.A.

Publicación externa

No

Medio

CEUR Workshop Proc.

Alcance

Conference Paper

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto SJR

0.191

Fecha de publicacion

01/01/2023

Scopus Id

2-s2.0-85178587954

Abstract

Local Interpretable Model-Agnostic Explanations (LIME) are a well-known approach to provide local interpretability to Machine Learning models. LIME uses an exponential smoothing kernel based on the kernel width value, which defines the width of the local neighbourhood. In this paper, we study the influence of the distances for these local explanations, and we explore the choice of kernel width to guarantee a fair performance comparison between the distances. © 2023 CEUR-WS. All rights reserved.

Palabras clave

Explainability; Exponential smoothing; Interpretability; Kernel width; Local interpretable model-agnostic explanation; Local neighborhoods; Machine learning models; Performance comparison; Smoothing kernels; XAI; Lime