← Back
Publicaciones

A Comparison of PSO-Based Informative Path Planners for Autonomous Surface Vehicles for Water Resource Monitoring

Authors

JARA TEN KATHEN, MICAELA, JURADO FLORES, ISABEL, GUTIÉRREZ REINA, DANIEL

External publication

No

Means

ACM Int. Conf. Proc. Ser.

Scope

Conference Paper

Nature

Científica

JCR Quartile

SJR Quartile

Publication date

01/01/2022

Scopus Id

2-s2.0-85132391290

Abstract

Preserving water resources is an objective that is constantly being pursued. Monitoring the aquatic environments is an action to fulfill this objective, since the state of the water quality will be controlled. The monitoring task can be carried out with Autonomous Surface Vehicles equipped with sensors that measure water quality parameters and with a monitoring system. This paper presents a comparison between informative path planners based on PSO for autonomous surface vehicles for water resources monitoring. The case presented is the case of Ypacarai Lake. The simulations carried out allow visualizing and comparing the response of different methods. The methods evaluated are the Local Best method, the Global Best method, the Uncertainty method, the Contamination method, the Classic PSO, Enhanced GP-based PSO, and the Epsilon Greedy method. For the optimization of the Enhanced GP-based PSO coefficients, Bayesian optimization is selected. The results show that the Enhanced GP-based PSO is the algorithm with the best solutions for monitoring the lake environment. © 2022 ACM.

Keywords

autonomous surface vehicles; Bayesian optimization; Gaussian process; particle swarm optimization; water monitoring; Ypacarai Lake

Universidad Loyola members