CEBALLOS GONZÁLEZ, MANUEL, NÚÑEZ VALDÉS, JUAN , TENORIO VILLALÓN, ÁNGEL FRANCISCO
Si
Int. J. Comput. Math.
Article
Científica
0.577
0.465
01/01/2015
000356234200010
In this paper, we show an algorithmic procedure to compute abelian subalgebras and ideals of a given finite-dimensional Leibniz algebra, starting from the non-zero brackets in its law. In order to implement this method, the symbolic computation package MAPLE 12 is used. Moreover, we also show a brief computational study considering both the computing time and the memory used in the two main routines of the implementation. Finally, we determine the maximal dimension of abelian subalgebras and ideals for 3-dimensional Leibniz algebras and 4-dimensional solvable ones over .
beta invariant; Leibniz algebra; abelian ideal; algorithm; abelian subalgebra; alpha invariant; 68Q25; 17A60; 17-08; 17A32; 68W30