← Back
Publicaciones

Application of SVM-RFE on EEG signals for detecting the most relevant scalp regions linked to affective valence processing

Authors

Hidalgo-Munoz, A. R. , Lopez, M. M. , Santos, I. M. , Pereira, A. T. , Vazquez-Marrufo, M. , GALVAO CARMONA, ALEJANDRO, Tome, A. M.

External publication

Si

Means

Expert Syst. Appl.

Scope

Article

Nature

Científica

JCR Quartile

SJR Quartile

JCR Impact

1.965

SJR Impact

1.305

Publication date

01/05/2013

ISI

000315607200019

Abstract

In this work, event related potentials (ERPs) induced by visual stimuli categorized with different value of affective valence are studied. EEG signals are recorded during visualization of selected pictures belonging to International Affective Picture System (IAPS). A Morlet wavelet filter is used to transform the EEG input space to a topography-time-frequency feature space. Support vector machine-recursive feature elimination (SVM-RFE) is applied for detecting scalp spectral dynamics of interest (SSDOIs) in this feature space, allowing to identify the most relevant time intervals, frequency bands and EEG channels. This feature selection method has proven to outperform the classical t-test in the discrimination of brain cortex regions involved in affective valence processing. Furthermore, the presented combination of feature extraction and selection techniques can be applied as an alternative in other different clinical applications. (C) 2012 Elsevier Ltd. All rights reserved.

Keywords

Affective valence; Brain oscillations; EEG; Feature extraction; Morlet wavelet; SVM-RFE

Universidad Loyola members