← Back
Publicaciones

FABIOLA: Towards the resolution of constraint optimization problems in big data environment

Authors

PARODY NÚÑEZ, MARÍA LUISA, Varela Vaca Á.J. , Gómez López M.T. , Gasca R.M.

External publication

Si

Means

Lect. Notes Inf. Sys. Organ.

Scope

Capítulo de un Libro

Nature

Científica

JCR Quartile

SJR Quartile

Publication date

01/01/2018

Scopus Id

2-s2.0-85047967315

Abstract

The optimization problems can be found in several examples within companies, such as the minimization of the production costs, the faults produced, or the maximization of customer loyalty. The resolution of them is a challenge that entails an extra effort. In addition, many of today’s enterprises are encountering the Big Data problems added to these optimization problems. Unfortunately, to tackle this challenge by medium and small companies is extremely difficult or even impossible. In this paper, we propose a framework that isolates companies from how the optimization problems are solved. More specifically, we solve optimization problems where the data is heterogeneous, distributed and of a huge volume. FABIOLA (FAst BIg cOstraint LAb) framework enables to describe the distributed and structured data used in optimization problems that can be parallelized (the variables are not shared between the various optimization problems), and obtains a solution using Constraint Programming Techniques. © Springer International Publishing AG, part of Springer Nature 2018.

Keywords

Big data; Constraint programming; Data structure; Optimization problem