ENDRINO ARMENTEROS, JOSÉ LUIS, Krzanowski J.E.
Si
J. Mater. Res.
Article
Científica
1.53
1.382
01/01/2002
000179614600026
2-s2.0-0036968258
The mechanical properties of WC-SiC thin films deposited by dual radio frequency magnetron sputtering were investigated. The films were characterized by x-ray photoelectron spectroscopy, x-ray diffraction (XRD), and transmission electron microscopy (TEM) to evaluate the details of the microstructure and degree of amorphization. The results indicate that small additions of SiC (<25%) can significantly increase hardness compared to a pure WC film, but higher SiC contents do not strongly affect hardness. XRD studies show the SiC had a disordering effect. TEM results showed that WC films had coarse porous structure, but films with a low silicon carbide content (approximately 10 to 25 at%) had a denser nanocrystalline structure. Samples with greater than 25% SiC were amorphous. The initial hardness increase at lower SiC contents correlated well with the observed densification, but the transition to an amorphous structure did not strongly affect hardness.
Amorphization; Crystal microstructure; Densification; Hardness; Magnetron sputtering; Nanostructured materials; Porosity; Silicon carbide; Transmission electron microscopy; Tungsten carbide; X ray diffraction analysis; X ray photoelectron spectroscopy; Dual radio frequency magnetron sputtering; Nanocrystalline structure; Porous structure; Thin films