Chacon Rebollo, Tomas , DELGADO AVILA, ENRIQUE, Gomez Marmol, Macarena , Ballarin, Francesco , Rozza, Gianluigi
No
SIAM J. Numer. Anal.
Article
Científica
2.047
2.657
01/01/2017
000418663500022
In this work we present a reduced basis Smagorinsky turbulence model for steady flows. We approximate the nonlinear eddy diffusion term using the empirical interpolation method (cf. [M. A. Grepl et al., ESAIM Math. Model. Numer. Anal., 41 (2007), pp. 575-605; Barrault et al., C. R. Acad. Sci. Paris Ser. I Math., 339 (2004), pp. 667-672]) and the velocity-pressure unknowns by an independent reduced-basis procedure. This model is based upon an a posteriori error estimation for a Smagorinsky turbulence model. The theoretical development of the a posteriori error estimation is based on [S. Deparis, SIAM J. Sci. Comput., 46 (2008), pp. 2039-2067] and [A. Manzoni, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 1199-1226], according to the Brezzi-Rappaz-Raviart stability theory, and adapted for the nonlinear eddy diffusion term. We present some numerical tests, programmed in FreeFem++ (cf. [F. Hecht, J. Numer. Math., 20 (2012), pp. 251-265]), in which we show a speedup on the computation by factor larger than 1000 in benchmark two-dimensional flows.
reduced basis method; empirical interpolation method; a posteriori error estimation; steady Smagorinsky model