| Título | Computing abelian subalgebras for linear algebras of upper-triangular matrices from an algorithmic perspective |
|---|---|
| Autores | CEBALLOS GONZÁLEZ, MANUEL, NÚÑEZ VALDÉS, JUAN , TENORIO VILLALÓN, ÁNGEL FRANCISCO |
| Publicación externa | No |
| Medio | Analele Stiint. Univ. Ovidius C. |
| Alcance | Article |
| Naturaleza | Científica |
| Cuartil JCR | 4 |
| Cuartil SJR | 3 |
| Impacto JCR | 0.422 |
| Impacto SJR | 0.348 |
| Fecha de publicacion | 01/01/2016 |
| ISI | 000386929100009 |
| DOI | 10.1515/auom-2016-0032 |
| Abstract | In this paper, the maximal abelian dimension is algorithmically and computationally studied for the Lie algebra h(n), of nxn upper -triangular matrices. More concretely, we define an algorithm to compute abelian subalgebras of h(n), besides programming its implementation with the symbolic computation package MAPLE. The algorithm returns a maximal abelian subalgebra of h(n), and, hence, its maximal abelian dimension. The order n of the matrices h(n) is the unique input needed to obtain these subalgebras. Finally, a computational study of the algorithm is presented and we explain and comment some suggestions and comments related to how it works. |
| Palabras clave | Maximal abelian dimension; solvable Lie algebra; algorithm |
| Miembros de la Universidad Loyola |