Título |
A new family of boundary-domain integral equations for the diffusion equation with variable coefficient in unbounded domains |
Autores |
FRESNEDA PORTILLO, CARLOS |
Publicación externa |
No |
Medio |
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS |
Alcance |
Article |
Naturaleza |
Científica |
Cuartil JCR |
1 |
Cuartil SJR |
1 |
Impacto JCR |
1.916 |
Impacto SJR |
1.077 |
Web |
https://www.aimsciences.org/article/doi/10.3934/cpaa.2020228 |
Fecha de publicacion |
01/07/2020 |
ISI |
000565906000005 |
DOI |
10.3934/cpaa.2020228 |
Abstract |
A system of Boundary-Domain Integral Equations is derived from the mixed (Dirichlet-Neumann) boundary value problem for the diffusion equation in inhomogeneous media defined on an unbounded domain. This paper extends the work introduced in [25] to unbounded domains. Mapping properties of parametrix-based potentials on weighted Sobolev spaces are analysed. Equivalence between the original boundary value problem and the system of BDIEs is shown. Uniqueness of solution of the BDIEs is proved using Fredholm Alternative and compactness arguments adapted to weigthed Sobolev spaces. |
Palabras clave |
Variable coefficient; parametrix; unbounded domains; exterior problem; weighted Sobolev spaces; boundary-domain integral equations |
Miembros de la Universidad Loyola |
|