Título A new family of boundary-domain integral equations for the diffusion equation with variable coefficient in unbounded domains
Autores FRESNEDA PORTILLO, CARLOS
Publicación externa No
Medio COMMUNICATIONS ON PURE AND APPLIED ANALYSIS
Alcance Article
Naturaleza Científica
Cuartil JCR 1
Cuartil SJR 1
Impacto JCR 1.916
Impacto SJR 1.077
Web https://www.aimsciences.org/article/doi/10.3934/cpaa.2020228
Fecha de publicacion 01/07/2020
ISI 000565906000005
DOI 10.3934/cpaa.2020228
Abstract A system of Boundary-Domain Integral Equations is derived from the mixed (Dirichlet-Neumann) boundary value problem for the diffusion equation in inhomogeneous media defined on an unbounded domain. This paper extends the work introduced in [25] to unbounded domains. Mapping properties of parametrix-based potentials on weighted Sobolev spaces are analysed. Equivalence between the original boundary value problem and the system of BDIEs is shown. Uniqueness of solution of the BDIEs is proved using Fredholm Alternative and compactness arguments adapted to weigthed Sobolev spaces.
Palabras clave Variable coefficient; parametrix; unbounded domains; exterior problem; weighted Sobolev spaces; boundary-domain integral equations
Miembros de la Universidad Loyola

Change your preferences Gestionar cookies