← Volver atrás
Publicaciones

A new family of boundary-domain integral equations for the diffusion equation with variable coefficient in unbounded domains

Autores

FRESNEDA PORTILLO, CARLOS

Publicación externa

No

Medio

Commun. Pure Appl. Anal

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

1.916

Impacto SJR

1.077

Fecha de publicacion

01/07/2020

ISI

000565906000005

Abstract

A system of Boundary-Domain Integral Equations is derived from the mixed (Dirichlet-Neumann) boundary value problem for the diffusion equation in inhomogeneous media defined on an unbounded domain. This paper extends the work introduced in [25] to unbounded domains. Mapping properties of parametrix-based potentials on weighted Sobolev spaces are analysed. Equivalence between the original boundary value problem and the system of BDIEs is shown. Uniqueness of solution of the BDIEs is proved using Fredholm Alternative and compactness arguments adapted to weigthed Sobolev spaces.

Palabras clave

Variable coefficient; parametrix; unbounded domains; exterior problem; weighted Sobolev spaces; boundary-domain integral equations