← Volver atrás
Publicaciones

Algorithm to compute abelian subalgebras and ideals in Malcev algebras

Autores

CEBALLOS GONZÁLEZ, MANUEL, Nunez, J. , Tenorio, A. F.

Publicación externa

Si

Medio

Math. Meth. Appl. Sci.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

1.017

Impacto SJR

0.698

Fecha de publicacion

01/11/2016

ISI

000385719500021

Abstract

In this paper, we introduce an algorithmic procedure that computes abelian subalgebras and ideals of a given finite-dimensional Malcev algebra. All the computations are performed by using the non-zero brackets in the law of the algebra as input. Additionally, the algorithm also computes the and invariants of these algebras, and as a supporting output, a list of abelian ideals and subalgebras of maximal dimension is returned too. To implement this algorithm, we have used the symbolic computation package MAPLE 12, performing a brief computational and statistical study for it and its implementation. Copyright (c) 2016 John Wiley & Sons, Ltd.

Palabras clave

Malcev algebra; abelian subalgebra; abelian ideal; invariant; invariant; algorithm

Miembros de la Universidad Loyola