← Volver atrás
Publicaciones

Algorithmic procedure to compute abelian subalgebras and ideals of maximal dimension of Leibniz algebras

Autores

CEBALLOS GONZÁLEZ, MANUEL, NÚÑEZ VALDÉS, JUAN , TENORIO VILLALÓN, ÁNGEL FRANCISCO

Publicación externa

Si

Medio

Int. J. Comput. Math.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

0.577

Impacto SJR

0.465

Fecha de publicacion

01/01/2015

ISI

000356234200010

Abstract

In this paper, we show an algorithmic procedure to compute abelian subalgebras and ideals of a given finite-dimensional Leibniz algebra, starting from the non-zero brackets in its law. In order to implement this method, the symbolic computation package MAPLE 12 is used. Moreover, we also show a brief computational study considering both the computing time and the memory used in the two main routines of the implementation. Finally, we determine the maximal dimension of abelian subalgebras and ideals for 3-dimensional Leibniz algebras and 4-dimensional solvable ones over .

Palabras clave

beta invariant; Leibniz algebra; abelian ideal; algorithm; abelian subalgebra; alpha invariant; 68Q25; 17A60; 17-08; 17A32; 68W30

Miembros de la Universidad Loyola