ENDRINO ARMENTEROS, JOSÉ LUIS, Prasad, R. G. S. V. , Basavaraju, D. , Rao, K. N. , Mosquera, A. , Naveen, C. S. , Phani, A. R.
No
Nanosci. Nanotechnol. Lett.
Article
Científica
0.528
0.239
01/10/2011
000300212000005
2-s2.0-82455206153
We prepared thin films composed of pure TiO2 or TiO2 with an Fe additive (at concentrations of 0.2-0.8 wt%) via a simple and cost effective sol gel process, and tested their antifungal properties (against Candida albicans (MTCC-1637), Candida tropicalis (MTCC-184), Candida parapsilosis (MTCC-2509), and Candida glabrata (MTCC-3019) and antibacterial properties (against Staphylococcus faecalis (NCIM-2604) Staphylococcus epidermidis (NCIM-2493), Staphylococcus aureus (NCIL-2122), and Bacillus subtilis (NCIM-2549)). The films were deposited on glass and Si substrates and subjected to annealing at 400 degrees C for 3 h in ambient air. The film structural and morphological properties were investigated by X-ray photoelectron spectroscopy profilometry and scanning electron microscopy, respectively. Antifungal and antibacterial tests were conducted using the drop test method. Among the species examined, Candida albicans (MTCC-1637), and Staphylococcus aureus (NCIL-2122) showed complete colony formation inhibition after exposure for 4 h for the TiO2 loaded with 0.8 wt% Fe thin films. These results indicate that increasing the Fe concentration increased the antimicrobial activity, with complete inhibition of colony formation after 4 h exposure.
Sol-Gel Process; TiO2 Thin Films; Scanning Electron Microscopy; Antimicrobial Activity; X-Ray Photoelectron Spectroscopy; Fe Additive