Título |
BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR DIRICHLET DIFFUSION PROBLEMS WITH NON-SMOOTH COEFFICIENT |
Autores |
FRESNEDA PORTILLO, CARLOS, Woldemicheal, Zenebe W. |
Publicación externa |
No |
Medio |
Electronic Journal of Differential Equations |
Alcance |
Article |
Naturaleza |
Científica |
Cuartil JCR |
3 |
Cuartil SJR |
3 |
Impacto JCR |
0.7 |
Impacto SJR |
0.412 |
Web |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128711621&partnerID=40&md5=3341115c6a7222a5ee6d67513892eac1 |
Fecha de publicacion |
31/03/2022 |
ISI |
000782726300001 |
Scopus Id |
2-s2.0-85128711621 |
Abstract |
We obtain a system of boundary-domain integral equations (BDIE) equivalent to the Dirichlet problem for the diffusion equation in non-homogeneous media. We use an extended version of the boundary integral method for PDEs with variable coefficients for which a parametrix is required. We generalize existing results for this family of parametrices considering a non-smooth variable coefficient in the PDE and source term in Hs-2(Omega), 1/2 < s < 3/2 defined on a Lipschitz domain. The main results concern the equivalence between the original BVP and the corresponding BDIE system, as well as the well-posedness of the BDIE system. |
Palabras clave |
Non-smooth coefficients; parametrix; Lipschitz domain; diffusion equation; boundary-domain integral equations; minimal wave speed |
Miembros de la Universidad Loyola |
|