← Volver atrás
Publicaciones

BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR DIRICHLET DIFFUSION PROBLEMS WITH NON-SMOOTH COEFFICIENT

Autores

FRESNEDA PORTILLO, CARLOS, Woldemicheal, Zenebe W.

Publicación externa

No

Medio

Electron. J. Differ. Equ.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

0.7

Impacto SJR

0.412

Fecha de publicacion

31/03/2022

ISI

000782726300001

Scopus Id

2-s2.0-85128711621

Abstract

We obtain a system of boundary-domain integral equations (BDIE) equivalent to the Dirichlet problem for the diffusion equation in non-homogeneous media. We use an extended version of the boundary integral method for PDEs with variable coefficients for which a parametrix is required. We generalize existing results for this family of parametrices considering a non-smooth variable coefficient in the PDE and source term in Hs-2(Omega), 1/2 < s < 3/2 defined on a Lipschitz domain. The main results concern the equivalence between the original BVP and the corresponding BDIE system, as well as the well-posedness of the BDIE system.

Palabras clave

Non-smooth coefficients; parametrix; Lipschitz domain; diffusion equation; boundary-domain integral equations; minimal wave speed