← Volver atrás
Publicaciones

Classification by means of evolutionary product-unit neural networks

Autores

Hervás C. , MARTÍNEZ ESTUDILLO, FRANCISCO JOSÉ, Gutiérrez P.A.

Publicación externa

No

Medio

IEEE Int. Conf. Neural. Netw. Conf. Proc.

Alcance

Conference Paper

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto SJR

0.202

Fecha de publicacion

01/01/2006

Scopus Id

2-s2.0-40649104792

Abstract

We propose a classification method based on a special class of feed-forward neural network, namely product-unit neural networks. They are based on multiplicative nodes instead of additive ones, where the nonlinear basis functions express the possible strong interactions among the variables. We apply an evolutionary algorithm to determine the basic structure of the productunit model and to estimate the coefficients of the model. The empirical results show that the proposed model is very promising in terms of classification accuracy, yielding a stateof-the-art performance. © 2006 IEEE.

Palabras clave

Evolutionary algorithms; Feedforward neural networks; Mathematical models; Multiplicative nodes; Nonlinear basis functions; Product unit model; Classification (of information)

Miembros de la Universidad Loyola