← Volver atrás
Publicaciones

Combined projection and kernel basis functions for classification in evolutionary neural networks

Autores

Gutierrez, P. A. , Hervas, C. , CARBONERO RUZ, MARIANO, Fernandez, J. C.

Publicación externa

No

Alcance

Proceedings Paper

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Fecha de publicacion

01/01/2007

ISI

000253272200012

Abstract

This paper describes a methodology for constructing the hidden layer of a feed forward network using a possible combination of different transfer projection functions (sigmoidal, product) and kernel functions (radial basis functions), where the architecture, weights and node typology is learnt using an evolutionary programming algorithm. The methodology proposed is tested using five benchmark classification problems from well-known machine intelligence problems. We conclude that combined functions are better than pure basis functions for the classification task in several datasets and that the combination of basis functions produces the best models in some other datasets.

Palabras clave

classification; projection basis functions; kernel basis functions; evolutionary neural networks

Miembros de la Universidad Loyola