← Volver atrás
Publicaciones

Computing abelian subalgebras for linear algebras of upper-triangular matrices from an algorithmic perspective

Autores

CEBALLOS GONZÁLEZ, MANUEL, NÚÑEZ VALDÉS, JUAN , TENORIO VILLALÓN, ÁNGEL FRANCISCO

Publicación externa

No

Medio

Analele Stiint. Univ. Ovidius C.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

0.422

Impacto SJR

0.348

Fecha de publicacion

01/01/2016

ISI

000386929100009

Abstract

In this paper, the maximal abelian dimension is algorithmically and computationally studied for the Lie algebra h(n), of nxn upper -triangular matrices. More concretely, we define an algorithm to compute abelian subalgebras of h(n), besides programming its implementation with the symbolic computation package MAPLE. The algorithm returns a maximal abelian subalgebra of h(n), and, hence, its maximal abelian dimension. The order n of the matrices h(n) is the unique input needed to obtain these subalgebras. Finally, a computational study of the algorithm is presented and we explain and comment some suggestions and comments related to how it works.

Palabras clave

Maximal abelian dimension; solvable Lie algebra; algorithm

Miembros de la Universidad Loyola