← Volver atrás
Publicaciones

Double summation addition theorems for Jacobi functions of the ?rst and second kind

Autores

Cohl, H.S. , COSTAS SANTOS, ROBERTO SANTIAGO, Durand, L. , Montoya, C. , Olafsson, G.

Publicación externa

No

Alcance

Conference Paper

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Fecha de publicacion

01/01/2025

Scopus Id

2-s2.0-105005281380

Abstract

In this paper, we review and derive hyperbolic and trigonometric double summation addition theorems for Jacobi functions of the ?rst and second kind. In connection with these addition theorems, we perform a full analysis of the relation between (i) Jacobi functions with symmetric, antisymmetric, and half odd integer parameter values, and (ii) certain Gauss hypergeometric functions that satisfy a quadratic transformation, including associated Legendre, Gegenbauer and Ferrers functions of the ?rst and second kind. We also introduce Olver normalizations of the Jacobi functions, which are particularly useful in the derivation of expansion formulas when the parameters are integers. We apply the addition theorems for Jacobi functions of the second kind to separated eigenfunction expansions of fundamental solutions of Laplace–Beltrami operators on compact and noncompact rank-one symmetric spaces. © 2025 American Mathematical Society.

Palabras clave

Addition theorems; Jacobi function of the ?rst kind; Jacobi function of the second kind; Jacobi polynomials; ultraspherical polynomials

Miembros de la Universidad Loyola