← Volver atrás
Publicaciones

Evolutionary q-Gaussian radial basis functions for binary-classification

Autores

FERNÁNDEZ NAVARRO, FRANCISCO DE ASÍS, Hervás-Martínez C. , Gutiérrez P.A. , Cruz-Ramírez M. , CARBONERO RUZ, MARIANO

Publicación externa

No

Medio

Lect. Notes Comput. Sci.

Alcance

Conference Paper

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto SJR

0.322

Fecha de publicacion

01/01/2010

ISI

000286905700035

Scopus Id

2-s2.0-77954602192

Abstract

This paper proposes a Radial Basis Function Neural Network (RBFNN) which reproduces different Radial Basis Functions (RBFs) by means a real parameter q, named q-Gaussian RBFNN. The architecture, weights and node topology are learnt through a Hybrid Algorithm (HA) with the iRprop?+ algorithm as the local improvement procedure. In order to test its overall performance, an experimental study with eleven datasets, taken from the UCI repository is presented. The RBFNN with the q-Gaussian is compared to RBFNN with Gaussian, Cauchy and Inverse Multiquadratic RBFs. © 2010 Springer-Verlag.

Palabras clave

Data sets; Experimental studies; Gaussian radial basis functions; Gaussians; Hybrid algorithms; Multiquadratics; Radial basis function neural networks; Radial basis functions; UCI repository; Gaussian distribution; Image segmentation; Radial basis function networks; Neural networks

Miembros de la Universidad Loyola