← Volver atrás
Publicaciones

Extreme Learning Machine to Analyze the Level of Default in Spanish Deposit Institutions

Autores

MONTERO ROMERO, Mª TERESA, LÓPEZ MARTÍN, MARÍA DEL CARMEN, BECERRA ALONSO, DAVID, MARTÍNEZ ESTUDILLO, FRANCISCO JOSÉ

Publicación externa

No

Medio

Rev. Metodos Cuantitativos Econ. Empresa

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto SJR

0.14

Fecha de publicacion

01/01/2012

Scopus Id

2-s2.0-84872566848

Abstract

The level of default in financial institutions is a key piece of information in the activity of these organizations and reveals their level of risk. This in turn explains the growing attention given to variables of this kind, during the crisis of these last years. This paper presents a method to estimate the default rate using the non-linear model defined by standard Multilayer Perceptron (MLP) neural networks trained with a novel methodology called Extreme Learning Machine (ELM). The experimental results are promising, and show a good performance when comparing the MLP model trained with the Leverberg-Marquard algorithm.

Palabras clave

Extreme learning machine; Financial institutions; Level of default; Neural networks