← Volver atrás
Publicaciones

Localised Kinky Inference

Autores

Blaas, A. , MANZANO CRESPO, JOSÉ MARÍA, Limon, D. , Calliess, J. , IEEE

Publicación externa

No

Medio

Eur. Control Conf., ECC

Alcance

Proceedings Paper

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Fecha de publicacion

01/01/2019

ISI

000490488301002

Abstract

Their flexibility to learn general function classes renders nonparametric regression algorithms particularly attractive in system identification and data-based control settings, where little a priori knowledge about a dynamical system is to be presumed. Building on approaches known as NSM- or Lipschitz regression, we propose a new nonparametic machine learning approach. While it inherits theoretical learning guarantees from the methods it is built upon, it is designed to limit the computational effort both for learning and for generating predictions. This renders our method applicable to online system identification and control settings where the desired sample frequency precludes previous nonparametric approaches from being deployed. Apart from deriving a guarantee on the ability of our method to learn any continuous function, we illustrate some of its practical merits on a number of benchmark comparison problems.

Miembros de la Universidad Loyola