Título Magnetization Dynamics Under a Quasiperiodic Magnetic Field
Autores Laroze, David, BECERRA ALONSO, DAVID, Gallas, Jason A. C., Pleiner, Harald, BECERRA ALONSO, DAVID
Publicación externa No
Medio IEEE Trans. Magn.
Alcance Article
Naturaleza Científica
Cuartil JCR 2
Cuartil SJR 1
Impacto JCR 1.42200
Impacto SJR 0.76900
Ámbito Internacional
Fecha de publicacion 01/11/2012
ISI 000310194400213
Scopus Id 2-s2.0-84867770580
DOI 10.1109/TMAG.2012.2207378
Abstract In the present work, we study the deterministic spin dynamics of an anisotropic magnetic particle in the presence of a time dependent magnetic field using the Landau-Lifshitz-Gilbert equation. In particular, we study the case when the magnetic field consists in two terms. One is perpendicular to the anisotropy direction and has quasiperiodic time dependence, while the other term is constant and parallel to the anisotropy direction. We numerically characterize the dynamical behavior of the system by monitoring the Lyapunov exponents, and by calculating Poincare sections and Fourier spectra. In addition, we calculate analytically the corresponding Melnikov function which gives us the bifurcations of the homoclinic orbits. We find a rather complicated landscape of sometimes closely intermingled chaotic and non-chaotic areas in parameters space. Finally, we show that the system exhibits strange nonchaotic attractors.
Palabras clave Chaotic dynamics; Lyapunov spectrum; magnetization dynamics; quasiperiodic (QP) modulation
Miembros de la Universidad Loyola

Change your preferences Gestionar cookies