← Volver atrás
Publicaciones

MATRICES TOTALLY POSITIVE RELATIVE TO A TREE

Autores

Johnson, Charles R. , COSTAS SANTOS, ROBERTO SANTIAGO, Tadchiev, Boris

Publicación externa

Si

Medio

Electron J. Linear Algebra

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

0.892

Impacto SJR

0.981

Fecha de publicacion

01/04/2009

ISI

000265108300001

Scopus Id

2-s2.0-65749091058

Abstract

It is known that for a totally positive (TP) matrix, the eigenvalues are positive and distinct and the eigenvector associated with the smallest eigenvalue is totally nonzero and has an alternating sign pattern. Here, a certain weakening of the TP hypothesis is shown to yield a similar conclusion.

Palabras clave

Totally positive matrices; Sylvester's identity; Graph theory; Spectral theory

Miembros de la Universidad Loyola