Título Memetic Pareto Evolutionary artificial neural networks for the determination of growth limits of listeria monocytogenes
Autores Fernández J.C. , Gutiérrez P.A. , Hervás C. , MARTÍNEZ ESTUDILLO, FRANCISCO JOSÉ
Publicación externa No
Medio Proceedings - 8th International Conference On Hybrid Intelligent Systems, His 2008
Alcance Capítulo de un Libro
Naturaleza Científica
Web https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349131733&doi=10.1109%2fHIS.2008.13&partnerID=40&md5=2e94b1bd34d9b845fe640fe38ebb31f7
Fecha de publicacion 01/01/2008
Scopus Id 2-s2.0-55349131733
DOI 10.1109/HIS.2008.13
Abstract The main objective of this work is to automatically design neural network models with sigmoidal basis units for classification tasks, so that classifiers are obtained in the most balanced way possible in terms of CCR and Sensitivity (given by the lowest percentage of examples correctly predicted to belong to each class). We present a Memetic Pareto Evolutionary NSGA2 (MPENSGA2) approach based on the Pareto-NSGAII evolution (PNSGAII) algorithm. We propose to augmente it with a local search using the improved Rprop-IRprop algorithm for the prediction of growth/no growth of L. monocytogenes as a function of the storage temperature, pH, citric (CA) and ascorbic acid (AA). The results obtained show that the generalization ability can be more efficiently improved within a framework that is multi-objective instead of a within a single-objective one. © 2008 IEEE.
Palabras clave Acids; Forecasting; Intelligent control; Intelligent systems; Ketones; Organic acids; Pareto principle; Vegetation; Ascorbic acids; Classification tasks; Evolutionary Artificial Neural networks; Generalization abilities; Listeria monocytogenes; Local searches; Memetic; Monocytogenes; Neural network models; Nsga-ii; Storage temperatures; Neural networks
Miembros de la Universidad Loyola

Change your preferences Gestionar cookies