← Volver atrás
Publicaciones

Neural Network Ensembles to Determine Growth Multi-classes in Predictive Microbiology

Autores

FERNÁNDEZ NAVARRO, FRANCISCO DE ASÍS, Chen, Huanhuan , Gutierrez, P. A. , Hervas-Martinez, C. , Yao, Xin

Publicación externa

Si

Medio

Lect. Notes Comput. Sci.

Alcance

Proceedings Paper

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto SJR

0.346

Fecha de publicacion

01/01/2012

ISI

000309173800030

Abstract

This paper evaluates the performance of different ordinal regression, nominal classifiers and regression models when predicting probability growth of the Staphylococcus Aureus microorganism. The prediction problem has been formulated as an ordinal regression problem, where the different classes are associated to four values in an ordinal scale. The results obtained in this paper present the Negative Correlation Learning as the best tested model for this task. In addition, the use of the intrinsic ordering information of the problem is shown to improve model performance.

Palabras clave

Negative Correlation Learning; Neural Networks; Ordinal Regression