← Volver atrás
Publicaciones

On the existence and uniqueness of solution of boundary-domain integral equations for the Dirichlet problem for the nonhomogeneous heat transfer equation defined on a 2D unbounded domain

Autores

FRESNEDA PORTILLO, CARLOS, Woldemicheal, ZW

Publicación externa

No

Medio

Math. Meth. Appl. Sci.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

2.321

Impacto SJR

0.719

Fecha de publicacion

20/10/2020

ISI

000577531200001

Scopus Id

2-s2.0-85092566675

Abstract

A system of boundary-domain integral equations (BDIEs) is obtained from the Dirichlet problem for the diffusion equation in nonhomogeneous media defined on an exterior two-dimensional domain. We use a parametrix different from the one employed in Dufera and Mikhailov (2019). The system of BDIEs is formulated in terms of parametrix-based surface and volume potentials whose mapping properties are analyzed in weighted Sobolev spaces. The system of BDIEs is shown to be equivalent to the original boundary value problem and uniquely solvable in appropriate weighted Sobolev spaces suitable for unbounded domains.

Palabras clave

boundary-domain integral equations; Dirichlet problem; exterior problem; parametrix; remainder; unbounded domain; variable coefficient; weighted Sobolev spaces