← Volver atrás
Publicaciones

On the Gaussian curvature of maximal surfaces in n-dimensional generalized Robertson-Walker spacetimes

Autores

Alias, LJ , MARTÍNEZ ESTUDILLO, FRANCISCO JOSÉ, Romero, A

Publicación externa

No

Medio

Classical Quantum Gravity

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Fecha de publicacion

01/12/1996

ISI

A1996WE04700011

Scopus Id

2-s2.0-0007395699

Abstract

We study compact maximal surfaces in the family of generalized Robertson-Walker spacetimes. We prove an integral inequality for their Gaussian curvature K, with equality characterizing the totally geodesic case. This gives an integral alternative to the irregular behaviour of K, which is due to the fact that the normal fibre bundle is Lorentzian and that our ambient spacetimes are not necessarily spatially homogeneous. We also give some consequences and applications for certain relevant cases of these spacetimes.

Miembros de la Universidad Loyola