← Volver atrás
Publicaciones

On the Relation Between Gegenbauer Polynomials and the Ferrers Function of the First Kind

Autores

Cohl, H. S. , COSTAS SANTOS, ROBERTO SANTIAGO

Publicación externa

Si

Medio

Anal. Math.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

0.7

Impacto SJR

0.521

Fecha de publicacion

01/09/2022

ISI

000775954200003

Scopus Id

2-s2.0-85127428489

Abstract

Using the direct relation between the Gegenbauer polynomials Cn(lambda)(x) and the Ferrers function of the first kind P nu(mu)(x), we compute interrelations between certain Jacobi polynomials, Meixner polynomials, and Ferrers functions of the first and second kind. We then compute Rodrigues-type, standard integral orthogonality and Sobolev orthogonality relations for Ferrers functions of the first and second kinds. In the remainder of the paper using the relation between Gegenbauer polynomials and the Ferrers function of the first kind we derive connection and linearization relations, some definite integral and series expansions, Christoffel-Darboux summation formulas, Poisson kernel and infinite series closure relations (Dirac delta distribution expansions).

Palabras clave

Ferrers function; Gegenbauer polynomial; orthogonal polynomial; orthogonality relation; Christoffel-Darboux summation; Poisson kernel; closure relation

Miembros de la Universidad Loyola