← Volver atrás
Publicaciones

REPRESENTING FILIFORM LIE ALGEBRAS MINIMALLY AND FAITHFULLY BY STRICTLY UPPER-TRIANGULAR MATRICES

Autores

CEBALLOS GONZÁLEZ, MANUEL, Nunez, Juan , Tenorio, Angel F.

Publicación externa

Si

Medio

J. Algebra. Appl.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

0.373

Impacto SJR

0.588

Fecha de publicacion

01/06/2013

ISI

000316952300014

Abstract

In this paper, we compute minimal faithful representations of filiform Lie algebras by means of strictly upper-triangular matrices. To obtain such representations, we use nilpotent Lie algebras g(n), of n x n strictly upper-triangular matrices, because any given (filiform) nilpotent Lie algebra g admits a Lie-algebra isomorphism with a subalgebra of g(n) for some n is an element of N\{1}. In this sense, we search for the lowest natural integer n such that the Lie algebra g(n) contains the filiform Lie algebra g as a subalgebra. Additionally, we give a representative of each representation.

Palabras clave

Filiform Lie algebra; minimal faithful strictly upper-triangular matrix representation; algorithm

Miembros de la Universidad Loyola