← Volver atrás
Publicaciones

TRIANGULAR CONFIGURATIONS AND LIE ALGEBRAS OF STRICTLY UPPER-TRIANGULAR MATRICES

Autores

CEBALLOS GONZÁLEZ, MANUEL, Nunez, Juan , Tenorio, Angel F.

Publicación externa

No

Medio

Appl. Comput. Math.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

0.452

Impacto SJR

0.459

Fecha de publicacion

01/01/2014

ISI

000332593000006

Abstract

This paper studies and analyzes the 2-dimensional combinatorial structure associated with Lie algebra g(n), of strictly upper-triangular n x n matrices, where n is an element of N \ {1}. Some walks on this configuration are characterized by means of maximal abelian subalgebras in g(n), and the obtained results are applied to Representation Theory of Lie algebras.

Palabras clave

Triangular Configuration; Maximal Abelian Dimension; Matrix Algebra; Abelian; Subalgebra.

Miembros de la Universidad Loyola