Title Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Algebras
Authors CEBALLOS GONZÁLEZ, MANUEL, Towers, David A.
External publication No
Means MEDITERRANEAN JOURNAL OF MATHEMATICS
Scope Article
Nature Científica
JCR Quartile 2
SJR Quartile 2
SJR Impact 0.604
Web https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147441990&doi=10.1007%2fs00009-023-02306-4&partnerID=40&md5=83879dd7334281fea2d81a8a39fdf92c
Publication date 01/04/2023
ISI 000926227500003
Scopus Id 2-s2.0-85147441990
DOI 10.1007/s00009-023-02306-4
Abstract In this paper, we compare the abelian subalgebras and ideals of maximal dimension for finite-dimensional Leibniz algebras. We study Leibniz algebras containing abelian subalgebras of codimension 1, solvable and supersolvable Leibniz algebras for codimensions 1 and 2, nilpotent Leibniz algebras in case of codimension 2, and we also analyze the case of k-abelian p-filiform Leibniz algebras. Throughout the paper, we also give examples to clarify some results and the need for restrictions on the underlying field.
Keywords Leibniz algebra; abelian subalgebra; abelian ideal; solvable; nilpotent
Universidad Loyola members

Change your preferences Manage cookies