Title Benchmarking of several material constitutive models for tribology, wear, and other mechanical deformation simulations of Ti6Al4V
Authors Liu, Cen , Goel, Saurav , Llavori, Inigo , Stolf, Pietro , Giusca, Claudiu L. , Zabala, Alaitz , Kohlscheen, Joern , Paiva, Jose Mario , ENDRINO ARMENTEROS, JOSÉ LUIS, Veldhuis, Stephen C. , Rabinovich, German S. Fox
External publication Si
Means J. Mech. Behav. Biomed. Mater.
Scope Article
Nature Científica
JCR Quartile 2
SJR Quartile 1
JCR Impact 3.37200
SJR Impact 0.94400
Web https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065731770&doi=10.1016%2fj.jmbbm.2019.05.013&partnerID=40&md5=c8b806f26d9765446fb743f503f73524
Publication date 01/09/2019
ISI 000483636600016
Scopus Id 2-s2.0-85065731770
DOI 10.1016/j.jmbbm.2019.05.013
Abstract Use of an alpha-beta (multiphase HCP-BCC) titanium alloy, Ti6Al4V, is ubiquitous in a wide range of engineering applications. The previous decade of finite element analysis research on various titanium alloys for numerous biomedical applications especially in the field of orthopedics has led to the development of more than half a dozen material constitutive models, with no comparison available between them. Part of this problem stems from the complexity of developing a vectorised user-defined material subroutine (VUMAT) and the different conditions (strain rate, temperature and composition of material) in which these models are experimentally informed. This paper examines the extant literature to review these models and provides quantitative bench marking against the tabulated material model and a power law model of Ti6Al4V taking the test case of a uniaxial tensile and cutting simulation.
Keywords Ti6Al4V; Material models; Johnson-cook model; Zerilli armstrong model; Voyiadjis-abed model; Tensile test; Cutting
Universidad Loyola members

Change your preferences Manage cookies