Title Finite-dimensional Leibniz algebras and combinatorial structures
Authors CEBALLOS GONZÁLEZ, MANUEL, Nunez, J., Tenorio, A. F., CEBALLOS GONZÁLEZ, MANUEL
External publication No
Means Commun. Contemp. Math.
Scope Article
Nature Científica
JCR Quartile 1
SJR Quartile 1
JCR Impact 1.39400
Area International
Web https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994633258&doi=10.1142%2fS0219199717500043&partnerID=40&md5=d5956a0efa40ae04514362c6f9e6ae1b
Publication date 01/02/2018
ISI 000413441800006
Scopus Id 2-s2.0-84994633258
DOI 10.1142/S0219199717500043
Abstract Given a finite-dimensional Leibniz algebra with certain basis, we show how to associate such algebra with a combinatorial structure of dimension 2. In some particular cases, this structure can be reduced to a digraph or a pseudodigraph. In this paper, we study some theoretical properties about this association and we determine the type of Leibniz algebra associated to each of them.
Keywords Digraph; pseudodigraph; combinatorial structure; Leibniz algebra; Lie algebra
Universidad Loyola members