Title Input-to-state stable predictive control based on continuous projected kinky inference
Authors MANZANO CRESPO, JOSÉ MARÍA, Munoz de la Pena, David , Limon, Daniel
External publication No
Means INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Scope Article
Nature Científica
JCR Quartile 1
SJR Quartile 1
JCR Impact 3.9
SJR Impact 1.403
Web https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144044501&doi=10.1002%2frnc.6525&partnerID=40&md5=c050853cf95ce1051bebbea9274fe041
Publication date 13/12/2022
ISI 000898061600001
Scopus Id 2-s2.0-85144044501
DOI 10.1002/rnc.6525
Abstract In this article, the authors propose a novel continuous projected kinky inference algorithm, which inherits the good properties of projected kinky inference in terms of prediction error bound and computational time while ensuring Lipschitz continuity. Based on this, a learning based MPC is presented which is demonstrated to be input-to-state stable by design. Illustrative examples are shown in a learning-based MPC framework.
Keywords inference algorithms; machine learning; predictive control; input-to-state stability; system identification
Universidad Loyola members

Change your preferences Manage cookies