Title LISA Pathfinder as a Micrometeoroid Instrument
Authors Littenberg, T. B. , Baker, J. , Armano, M. , Audley, H. , Auger, G. , Baird, J. , Bassan, M. , Binetruy, P. , Born, M. , Bortoluzzi, D. , Brandt, N. , Caleno, M. , Cavalleri, A. , Cesarini, A. , Cruise, M. , Danzmann, K. , de Deus Silva, M. , De Rosa, R. , Di Fiore, L. , Diepholz, I. , Dolesi, R. , Dunbar, N. , Ferraioli, L. , Ferroni, V. , Fitzsimons, E. , Flatscher, R. , Freschi, M. , Marrirodriga, C. Garcia , Gerndt, R. , Gesa, L. , Gibert, F. , Giardini, D. , Giusteri, R. , Grado, A. , Grimani, C. , Grzymisch, J. , Harrison, I. , Heinzel, G. , Hewitson, M. , Hollington, D. , Hoyland, D. , Hueller, M. , Inchauspe, H. , Jennrich, O. , Jetzer, P. , Johlander, B. , Karnesis, N. , Kaune, B. , Korsakova, N. , Killow, C. , Lobo, A. , Lloro, I. , Liu, L. , Lopez-Zaragoza, J. P. , Maarschalkerweerd, R. , Mance, D. , Martin, V. , Martin-Polo, L. , Martino, J. , Martin-Porqueras, F. , Madden, S. , Mateos, I. , McNamara, P. W. , Mendes, J. , Mendel, L. , Nofrarias, M. , Paczkowski, S. , Perreur-Lloyd, M. , Petiteau, A. , Pivato, P. , Plagnol, E. , Prat, P. , Ragnit, U. , Ramos-Castro, J. , Reiche, J. , Robertson, D. I. , Rozemeijer, H. , RIVAS GARCÍA, FRANCISCO, Russano, G. , Sarra, P. , Schleicher, A. , Shaul, D. , Slutsky, J. , Sopuerta, C. F. , Stanga, R. , Sumner, T. , Texier, D. , Thorpe, J. I. , Trenke, C. , Troebs, M. , Vetrugno, D. , Vitale, S. , Wanner, G. , Ward, H. , Wass, P. , Wealthy, D. , Weber, W. J. , Wissel, L. , Wittchen, A. , Zambotti, A. , Zanoni, C. , Ziegler, T. , Zweifel, P. , LISA Pathfinder Team
External publication Si
Means SEVENTH INTERNATIONAL MEETING FOR RESEARCHERS IN MATERIALS AND PLASMA TECHNOLOGY, 7TH IMRMPT
Scope Proceedings Paper
Nature Científica
SJR Quartile 3
SJR Impact 0.241
Publication date 01/01/2017
ISI 000437968700007
DOI 10.1088/1742-6596/840/1/012007
Abstract LISA Pathfinder is perhaps the most precise accelerometry instrument ever flown in space. The drag-free control system can sense and react to external disturbances of an extremely small magnitude. One class of such disturbances are the impacts of micrometeoroids or dust. A simple model of the LPF system suggests that individual impacts with transferred momentum exceeding a few tens of nanoNewton-meters are detectable. Furthermore, the ability of LPF to resolve both the linear and angular momentum transfer as vector quantities allows information such as the sky location and the impact location of the impactor to be reconstructed. This novel approach to micrometeoroid detection and characterization, as well as the location of LPF at L1, provide an opportunity to improve our understanding of the dust environment in the inner solar system. Here we present some preliminary findings from LPF, including four candidate impact events.
Universidad Loyola members

Change your preferences Manage cookies