Title | On Polynomials Orthogonal with Respect to an Inner Product Involving Higher-Order Differences: The Meixner Case |
---|---|

Authors | COSTAS SANTOS, ROBERTO SANTIAGO, Soria-Lorente, Anier , Vilaire, Jean-Marie |

External publication | Si |

Means | Mathematics |

Scope | Article |

Nature | Científica |

JCR Quartile | 1 |

SJR Quartile | 2 |

JCR Impact | 2.4 |

SJR Impact | 0.446 |

Web | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134617291&doi=10.3390%2fmath10111952&partnerID=40&md5=9dbe40007946f8d95aafaf2caae79a47 |

Publication date | 01/06/2022 |

ISI | 000808863100001 |

Scopus Id | 2-s2.0-85134617291 |

DOI | 10.3390/math10111952 |

Abstract | In this contribution we consider sequences of monic polynomials orthogonal with respect to the Sobolev-type inner product < f, g > = < u(M), fg > + lambda J(i)f (alpha) J(i)g (alpha), where u(M) is the Meixner linear operator, lambda is an element of R+, j is an element of N, alpha <= 0, and J is the forward difference operator Delta or the backward difference operator del. Moreover, we derive an explicit representation for these polynomials. The ladder operators associated with these polynomials are obtained, and the linear difference equation of the second order is also given. In addition, for these polynomials, we derive a (2j + 3)-term recurrence relation. Finally, we find the Mehler-Heine type formula for the particular case alpha = 0. |

Keywords | Meixner polynomials; Meixner-Sobolev orthogonal polynomials; discrete kernel polynomials |

Universidad Loyola members |

Granada

Profesor Vicente Callao, 15.

Granada, España.

CP: 18011

Tel. +34 958 185 252

Sevilla

Avda. de las Universidades, 2

Dos Hermanas, Sevilla, España.

CP: 41704

Tel. +34 955 641 600

Córdoba

Escritor Castilla Aguayo, 4

Córdoba, España.

CP: 14004

Tel. +34 957 222 100

Aviso legal Buzón de sugerencias Política de cookies Protección de datos Canal de protección al informante