← Volver atrás
Publicaciones

Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Algebras

Autores

CEBALLOS GONZÁLEZ, MANUEL, Towers, David A.

Publicación externa

No

Medio

Mediterr. J. Math.

Alcance

Article

Naturaleza

Científica

Cuartil JCR

Cuartil SJR

Impacto JCR

1.1

Impacto SJR

0.604

Fecha de publicacion

01/04/2023

ISI

000926227500003

Scopus Id

2-s2.0-85147441990

Abstract

In this paper, we compare the abelian subalgebras and ideals of maximal dimension for finite-dimensional Leibniz algebras. We study Leibniz algebras containing abelian subalgebras of codimension 1, solvable and supersolvable Leibniz algebras for codimensions 1 and 2, nilpotent Leibniz algebras in case of codimension 2, and we also analyze the case of k-abelian p-filiform Leibniz algebras. Throughout the paper, we also give examples to clarify some results and the need for restrictions on the underlying field.

Palabras clave

Leibniz algebra; abelian subalgebra; abelian ideal; solvable; nilpotent

Miembros de la Universidad Loyola