Título An Evolutionary Computational Approach for Designing Micro Hydro Power Plants
Publicación externa No
Medio Energies
Alcance Article
Naturaleza Científica
Cuartil JCR 3
Cuartil SJR 2
Impacto JCR 2.702
Impacto SJR 0.635
Web https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062672972&doi=10.3390%2fen12050878&partnerID=40&md5=6284337638e8765e31d0f3086165a305
Fecha de publicacion 01/03/2019
ISI 000462646700111
Scopus Id 2-s2.0-85062672972
DOI 10.3390/en12050878
Abstract Micro Hydro Power Plants (MHPP) constitute an effective, environmentally-friendly solution to deal with energy poverty in rural isolated areas, being the most extended renewable technology in this field. Nevertheless, the context of poverty and lack of qualified manpower usually lead to a poor usage of the resources, due to the use of thumb rules and user experience to design the layout of the plants, which conditions the performance. For this reason, the development of robust and efficient optimization strategies are particularly relevant in this field. This paper proposes a Genetic Algorithm (GA) to address the problem of finding the optimal layout for an MHPP based on real scenario data, obtained by means of a set of experimental topographic measurements. With this end in view, a model of the plant is first developed, in terms of which the optimization problem is formulated with the constraints of minimal generated power and maximum use of flow, together with the practical feasibility of the layout to the measured terrain. The problem is formulated in both single-objective (minimization of the cost) and multi-objective (minimization of the cost and maximization of the generated power) modes, the Pareto dominance being studied in this last case. The algorithm is first applied to an example scenario to illustrate its performance and compared with a reference Branch and Bound Algorithm (BBA) linear approach, reaching reductions of more than 70% in the cost of the MHPP. Finally, it is also applied to a real set of geographical data to validate its robustness against irregular, poorly sampled domains.
Palabras clave MHPP; hydro-power; penstock; optimization; GA; simulated annealing; evolutionary computation
Miembros de la Universidad Loyola

Change your preferences Gestionar cookies