Título | Filiform Lie Algebras with Low Derived Length |
---|---|
Autores | Castro-Jiménez F.J. , CEBALLOS GONZÁLEZ, MANUEL, Núñez-Valdés J. |
Publicación externa | No |
Medio | Mediterr. J. Math. |
Alcance | Article |
Naturaleza | Científica |
Cuartil JCR | 2 |
Cuartil SJR | 2 |
Impacto JCR | 1.4 |
Impacto SJR | 0.696 |
Web | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094201741&doi=10.1007%2fs00009-020-01642-z&partnerID=40&md5=25c8c08ef0f653078080ff8306276213 |
Fecha de publicacion | 28/10/2020 |
ISI | 000582909900001 |
Scopus Id | 2-s2.0-85094201741 |
DOI | 10.1007/s00009-020-01642-z |
Abstract | We construct, for any n= 5 , a family of complex filiform Lie algebras with derived length at most 3 and dimension n. We also give examples of n-dimensional filiform Lie algebras with derived length greater than 3. © 2020, Springer Nature Switzerland AG. |
Palabras clave | derived length; Filiform Lie algebra; Lie algebra invariants |
Miembros de la Universidad Loyola |